A Novel Cache-Utilization Based Dynamic Voltage Frequency Scaling (DVFS) Mechanism for Reliability Enhancements
نویسندگان
چکیده
We propose a cache architecture using a 7T/14T SRAM [1] and a control mechanism for reliability enhancements. Our control mechanism differs from the conventional DVFS methods, which considers not only the CPI behaviors but also the cache utilizations. To measure cache utilization, a novel metric is proposed. The experimental results show that our proposed method achieves thousand times less bit-error occurrences compared to the conventional DVFS methods under the ultra-low voltage operation. Moreover, the results show that our proposed method surprisingly not only incurs no performance and energy overheads but also achieves on an average 5.1% performance improvement and 5% energy reduction compared to the conventional DVFS methods.
منابع مشابه
Green Energy-aware task scheduling using the DVFS technique in Cloud Computing
Nowdays, energy consumption as a critical issue in distributed computing systems with high performance has become so green computing tries to energy consumption, carbon footprint and CO2 emissions in high performance computing systems (HPCs) such as clusters, Grid and Cloud that a large number of parallel. Reducing energy consumption for high end computing can bring various benefits such as red...
متن کاملAn Oscillation-Based On-Chip Temperature-Aware Dynamic Voltage and Frequency Scaling Scheme in System-on-a-Chip
The excessively high temperature in a chip may cause circuit malfunction and performance degradation, and thus should be avoided to improve system reliability. In this paper, a novel oscillation-based onchip thermal sensing architecture for dynamically adjusting supply voltage and clock frequency in System-on-a-Chip (SoC) is proposed. It is shown that the oscillation frequency of a ring oscilla...
متن کاملMemory-Aware DVFS for CMP Systems
High-performance processors are becoming increasingly power bound with technology scaling. Dynamic voltage and frequency scaling (DVFS) has emerged as an efficient method of reducing power consumption by lowering the operating voltage and frequency of a processor. We propose a multicore memory-aware DVFS scheme based on VSV, a uniprocessor DVFS algorithm that throttles a core based on L2 cache ...
متن کاملTowards Power Efficiency on Task-Based, Decoupled Access-Execute Models
This work demonstrates the potential of hardware and software optimization to improve the effectiveness of dynamic voltage and frequency scaling (DVFS). For software, we decouple data prefetch (access) and computation (execute) to enable optimal DVFS selection for each phase. For hardware, we use measurements from state-of-the-art multicore processors to accurately model the potential of per-co...
متن کاملCache-Aware Utilization Control for Energy-Efficient Multi-Core Real-Time Systems
Multi-core processors are anticipated to become a major development platform for real-time systems. However, existing power management algorithms are not designed to sufficiently utilize the features available in many multi-core processors, such as shared L2 caches and per-core DVFS, to effectively minimize processor energy consumption while providing real-time guarantees. In this paper, we pro...
متن کامل